Using HPC as a Service for Remote Parallel Processing
on the Fiji Platform

Jan Kozusznik!2, Petr Bainar?, Jana Klimova2, Michal Krumnikl' 2, Pavel
Moravec!':2, V4clav Svatoti?, and Pavel Tomanéak?3

! Department of Computer Science, FEECS VSB — Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
2 IT4Innovations, VSB — Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
3 Max Planck Institute of Molecular Cell Biology and Genetics,
Pfotenhauerstrasse 108, 01307 Dresden, Germany
{jan.kozusznik, petr.bainar, jana.klimova, michal.krumnikl,
pavel.moravec, vaclav.svaton, pavel.tomancak}@vsb.cz

Abstract. Tackling current biomedical challenges calls for in-depth understand-
ing of biological systems, particularly their structures, functions, and interactions
on both the molecular and the cellular level. Biological imaging constitutes an im-
portant field of scientific investigation and one of its most valuable techniques
is fluorescence microscopy. State-of-the-art imaging devices, such as light sheet
microscopes, produce data sets so large that they can only be effectively ana-
lyzed by employing methods of image processing on high-performance comput-
ing (HPC) clusters. To address this issue, an HPC plugin for Fiji, one of the most
popular open-source software tools for image processing, has been developed.
The plugin enables end users to make use of HPC clusters to analyze large scale
image data remotely and via the standard Fiji user interface. Seamless interaction
between the remote HPC infrastructure and the user is substantially facilitated
by the HPC as a Service (HaaS) middleware. To demonstrate the performance
of the plugin it has been benchmarked on a Snakemake pipeline, performing
complex registration and fusion tasks on sizable Selective Plane Illumination Mi-
croscopy (SPIM) time-lapse in toto recordings of developing embryos. The pre-
sented plugin offers a graphical user interface which allows the user to smoothly
define task parameters, start execution, monitor progress, download results, and
debug errors of the SPIM image processing pipeline. The presented framework
will form a foundation for parallel deployment of any Fiji/Image]2 command
on a remote HPC resource, greatly facilitating big data analysis.

Keywords: Selective Plain [llumination Microscopy (SPIM); Image Analysis; Big
Data; High Performance Computing (HPC); ImageJ2; Fiji; HPC as a Service;
Snakemake

1 Introduction

Modern microscopes generate vast amounts of image data that often have to be com-
putationally processed before meaningful biological insights can be gained. The main

culprit responsible for the data explosion is light sheet fluorescence microscopy [?,?,?].
One of its techniques, Selective Plane Illumination Microscopy (SPIM) [2] is particu-
larly demanding in terms of data pre-processing, and yet SPIM has become very popu-
lar in biological studies since it allows imaging of cellular and developmental processes
over long periods of time at high spatial and temporal resolution and across relatively
large samples [1]. Such experiments can produce terabytes of multidimensional image
data, and researchers in biology are often poorly equipped to deal with such a massive
influx of imagery [?].

Fiji ("Fiji Is Just ImageJ"), a popular distribution of the open source platform for
biological image analysis ImageJ, has emerged as a tool of choice for SPIM data pro-
cessing (so called SPIMage processing) [9,?]. Plugins for multi-view reconstruction,
time-lapse registration, fusion, deconvolution, and visualization are integrated into a
comprehensive software solution under the familiar graphical user interface (GUI) of
Imagel [4,5,6,7,8]. Nevertheless, the sheer size of SPIM data makes deployment on
a single computer impractical. To address this problem, Schmied et al. introduced a
Snakemake based pipeline for parallel processing of SPIM data on a high-performance
cluster (HPC) [10]. This approach however requires considerable expertise in command
line operation as well as direct login access to an HPC cluster, two pre-requisites which
may be unavailable to a typical researcher in life sciences.

In the ideal scenario, any remote HPC resource should be accessible directly through
a Fiji GUI, for user-friendly big data SPIMage processing. An early attempt to achieve
this was the Archipelago project, which targeted particularly ad hoc clusters of idle
computers on a shared network in an academic institution. However, the set-up of
Archipelago required profound programming experience and its development became
inactive several years ago [REF footnote Github]. HPC as a Service (HPCaaS) consti-
tutes a convenient solution to the problem of lack of access to suitable HPC hardware.
HPCaaS enables users to access an HPC infrastructure without the need to purchase and
manage physical servers, therefore effectively lowering the entry barrier to massively
parallel processing.

In this paper we introduce a Fiji plugin which simplifies the tasks of remote de-
ployment and parallel execution of jobs by incorporating the HaaS middleware and
enhancing it with a graphical user interface. Consequently, the user can manage remote
task execution, monitor progress, and debug errors without any interaction via the com-
mand line. We use a complex, multi-step workflow for large multi-view SPIM data sets
as an application example for the proposed Fiji parallel processing framework.

2 Methods

2.1 HPC as a Service

To provide this simple and intuitive access to the supercomputing infrastructure an ap-
plication framework called HPC as a Service Middleware (from now on referred to
as HaaS middleware) has been developed at the IT4Innovation supercomputing center
in Ostrava Czech Republic '. As the name suggests, the implementation is utilizing a

"http://www.itdi.cz/?lang=en

r—-————=——7——7— 1 r—-—-————"~"~"~ T T T T T T T T T T T T = |
I Client application | HPC infrastructure
I infrastructure

| |

| |

| — | :

| - | File trasfer
| : » : SFTP/SCP },
I e
A l e

| | .

|
|
|
|
|
|
T
|
_ |
Users | Client agplication | : Scratch Storage
|
|
|
|
|
I
|
|
|
|

L]
HPC capabilities. — Job management
A \ SSH .
— \‘J — 0 HPC Cluster
Middleware HPC Scheduler

Fig. 1. Accessing the HPC environment via HPC as a Service Middleware

mid-layer that manages and provides information about submitted and running jobs and
their data between the client application and the HPC infrastructure (Figure 1). HaaS
middleware is able to submit required computation to HPC infrastructure, monitor the
progress and notify the user should the need arise. It provides necessary functions for
job management, monitoring and reporting, user authentication and authorization, file
transfer, encryption, and various notification mechanisms.

HaaS middleware is a universally designed software architecture that enables uni-
fied access to different HPC systems through a simple object-oriented client-server in-
terface using standard web services. In this way, it provides HPC capabilities to the
users without the need to manage the running jobs from the command-line interface of
the HPC scheduler on the cluster. It simplifies the access to the computation resources
from the security and administrative point of view. Users are no longer authenticated
via their IT4I’s cluster credentials because they do not need direct cluster access but are
authenticated via IT4I’s HaaS middleware. HaaS middleware also provides the mapping
between the external users and internal cluster service accounts that are being used for
the actual job submission to the cluster.

Therefore, for the security purposes HaaS middleware enables the users to run
only pre-prepared set of so-called Command Templates. Each template defines arbi-
trary script or executable file that will be executed on the cluster, any dependencies
or third-party software it might require and the type of queue that should be used for
the processing. The Command Template also contains the set of input parameters that
will be passed to the executable script during run-time. Thus, the users are only able to
execute pre-prepared command templates with the pre-defined set of input parameters,
however the actual value of each parameter can be changed by the user for each job
submission.

HaaS middleware has already been successfully used in several projects; for ex-
ample, providing What-If analysis in a crisis decision support system Floreon+ [11],
satellite image data analysis via ESA’s Urban TEP portal ! or in the area of molecu-

"https://urban-tep.eo.esa.int

lar diagnostics and personalized medicine. At IT4Innovations national supercomputing
center, the usual workflow with HaaS middleware consists of a one-time Command
Template preparation through cooperation of HPC center specialist and the end-user.
After that the computations can be routinely executed by the end-user.

2.2 SPIM image processing pipeline

SPIM typically images living biological samples from multiple angles (views) collect-
ing several 3D image stacks to cover the entire biological specimen. The 3D image
stacks, representing one time point in a long-term time-lapse acquisition, need to be
registered to each other which is typically achieved using fluorescent beads as fiduciary
markers [6]. After the registration, the individual views within one time-point need to
be combined into a single output image in a process referred to as fusion. Fiji offers
two multi-view fusion strategies: content-based fusion [?] and multi-view deconvolu-
tion [5], the latter of which is a computationally demanding iterative process frequently
requiring GPU acceleration.

In the context of long-term time-lapse imaging, the living specimen can move dur-
ing acquisition, necessitating an intermediate step of time-lapse registration achieved
usually with the same fiduciary beads as in multi-view registration [6]. Whereas par-
allel processing of individual time points has proven to be beneficial, the time-lapse
registration takes only a few seconds and can therefore be performed on a single com-
puting node without a need for parallelization.

The sheer size of the SPIM data requires conversion from raw microscopy data to
Hierarchical Data Format (HDFS) for efficient input/output access and visualization
through the BigDataViewer (BDV) Fiji plugin [4]. BDV uses an HDF5 container ac-
companied with an XML file containing experiment metadata (i.e. number of angles,
time points, channels etc.). Although the conversion to HDFS5 is a parallelizable proce-
dure, further updating the XML file downstream the pipeline is not and per-timepoint
XML files have to be created and then merged after completion of the registration and
fusion steps. Consequently, the parallel processing of individual time points on a HPC
resource (conversion to HDFS5, registration, fusion and deconvolution) is interrupted
by non-parallelizable steps (time-lapse registration and XML merging) performed typ-
ically on the cluster head node.

Schmied et al. introduced a Snakemake pipeline for parallel processing of indi-
vidual time points [?,?]. Input parameters for the pipeline are defined by the user on
an exemplary time-point of the SPIM acquisition using GUI-reliant Fiji SPIMage pro-
cessing plugins. The parameters are then entered into a config.yaml configuration file.
Snakemake workflow engine is capable of resolving dependencies between subsequent
steps and thereby executing in parallel any tasks appearing to be independent. We use
the complex SPIMage processing via Snakemake as a test case to demonstrate HaaS-
mediated remote cluster operation directly from Fiji GUI.

2.3 Interfacing Fiji SPIMage processing with HaaS

In order to provide the user with an intuitive interface for managing pipeline jobs!, we
created a Fiji plugin invokable from the application menu. This plugin communicates
with the HPC as a Service (HaaS) middleware that submits a request for pipeline job
execution to the cluster.

In the specific case of executing the SPIMage processing pipeline, the Snakemake
engine is launched on the cluster and starts performing pipeline steps with parameters
defined in the corresponding config.yaml file [10]. Consecutive steps identified by the
engine as independent are executed in parallel as separate computational tasks using an
instance of Fiji installed on the cluster.

Upon plugin (available from [3]) invocation, an initial window requiring HaaS user
credentials? is launched. Apart from user name, password and email address, a local
working directory needs to be defined. This directory contains a subdirectory for each
created job and is named identically to the job ID. In addition, job subdirectories serve
as staging areas for config.yaml configuration files specifying pipeline parameters. The
user can modify the job parameters by editing the corresponding config.yaml in a com-
mon text editor and restart an interrupted, finished, or failed job.

Following a successful login, the main window providing overview about all jobs is
displayed. The jobs are arranged in a table enabling the user to instantly check desired
information (Figure 2).

Job Id Status Creation time Start time End Time
232 Finished Thu Feb 15 19:02:18 CET 2018 Thu Feb 15 19:07:50 CET 2018 Thu Feb 15 21:07:14 CET 2018
Finished Thu Feb 15 19:07:35 CET 2018 Thu Feb 15 21:07:12 CET 2018

234 Finished Fri Feb 16 16:44:12 CET 2018 2018 Fri Feb 16 17:12:45 CET 2018
235 Canceled Frifeb1617:43:40 cET2018 | 1% 2018 Fri Feb 16 20:37:38 CET 2018
239 Configuring Fri Feb 23 10:39:44 CET 2018 NA
240 Running Fri Feb 23 10:39:48 CET 2018 | Execution details 2018 NA
241 Queued Fri Feb 23 10:52:26 CET 2018 | Download result N/A

Download statistics

Open working directory

Fig. 2. Main window

The user can create a new job by selecting Create job in the context menu, popping
up following a right-click on a table row. Upon job creation, the plugin obtains a new
job ID from the HaaS middleware and sets up a corresponding job subdirectory in the
working directory.

Similarly, the user can invoke a selected job by choosing Start job in the context
menu. Subsequently, the job is sent to the cluster via the HaaS middleware, which is re-
sponsible for the job life cycle from this point on. The main window providing overview
of all jobs periodically retrieves job state from HaaS and updates the table.

'In this context, the term job is used for a single pipeline run with specified parameters
2Credentials required for authentication can be applied for by contacting paper authors

In addition, by selecting Execution details in the context menu, the user can display
a detailed progress dashboard showing current states of all individual computational
tasks for this job (Figure 3). The dashboard also includes another pane for the Snake-
make output, being a powerful tool for debugging any computational errors which may
occur.

Following a successfully finished pipeline job, the user may download result data
(Download result) as well as a summary file containing key information on the per-
formed job such as average/maximal duration of a particular task or memory usage
statistics (Download statistics).

Unknown Done Error

salb yJlszalRsalionliso

o on/ / T T

Definy
Define hdfs dataset

eeeeeee

| [[[T T 7 T 7]
registrat =---------

[
- =
caration [e |
Aver [[[[]
. efine output .
o

Running Scheduled

Fig. 3. Detailed dashboard for a selected job

2.4 Technical specification of used HPC resources

The execution of Snakemake pipeline from the Fiji plugin was tested on the Salomon
supercomputer that consists of 1008 compute nodes, which in total provide 24 192
compute cores of x86-64 architecture and 129 TB RAM. 432 nodes are accelerated by
two Intel Xeon Phi 7110P accelerators with 16 GB RAM, providing additional 52 704
cores and 15 TB RAM. The total theoretical peak performance reaches 2000 TFLOPS.
Each node is equipped with 2x12 core Intel Haswell core processors and 128 GB RAM.
The system is running Red Hat Linux.

The pipeline was tested on a dataset used in the experiments on the Madmax cluster
at MPI-CBG [10]. Madmax cluster has 44 nodes with two Intel Xeon E5-2640, 2.5 GHz
CPUs with 6 cores each (average CPU PassMark 9498). In comparison, Salomon nodes
are equipped with two Intel Xeon E5-2680v3, 2.5 GHz CPU with 12 cores each (aver-
age CPU PassMark 18626). Salomon is running a newer generation of Xeon processors

(Haswell) providing two times higher performance than the Sandy Bridge architecture
used on MadMax.

3 Results

In order to test the remote execution of the SPIMage processing pipeline through the
developed Fiji plugin we uploaded a test dataset to the filesystem of the Salomon su-
percomputer at the National Supercomputing Center IT4Innovations in Ostrava, Czech
Republic.

Table 1. Comparison of average calculation times — original and Salomon cluster

Original cluster averages Salomon cluster averages
Summary Memory [MB]\CPU time [s]|{|Memory [MB]\CPU time [s]|#jobs
Define dataset 2316 908 1448 256 1
Define hdf5 dataset 2158 39 219 23 1
Resave to hdf5 2827 530 2168 177) 90
Detection and registration 7189 1388 5657 180 90
Merge xml 3 43 1 19 1
Time lapse registration 2534 953 1914 99 1
Average fusion 7761 3806 6765 280f 90
Deconvolution GPU Il CPU 27171 7485 55040 2874 90
Define output 3 23 514 28 1
Define hdf5 output 2 32 885 29 1
Resave output to hdf5 4918 534 3922 89| 90

This test dataset consists of 90 time-points of SPIM acquisition of a Drosophila
melanogaster embryo expressing FlyFos fluorescent GFP fusion reporter for GENE X
[?]. The embryo has been imaged with Lightsheet Z.1 SPIM microscope (Carl Zeiss
Microscopy) from 5 views every 15 minutes from before cellularization until germ-
band extension stage of embryogenesis. The raw data in the proprietary Zeiss .czi format
comprised XXXGB.

In the first step the .czi raw data were resaved into the HDFS container in parallel on
the cluster. Next, the individual time-points were registered using fluorescent beads as
fiduciary markers again in parallel on the cluster. Subsequently, a non-parallel job exe-
cuted by Snakemake consolidated the registration XMLs into a single file followed by
time-lapse registration using the beads segmented during the registration step. After this
the pipeline diverged into either the parallel content based fusion or multi-view decon-
volution. To achieve this divergence in practice, the Snakemake pipeline was launched
from the Fiji plugin as two separate jobs using two different config.yaml files set to
execute content based fusion and deconvolution respectively. In the final stage of the
pipeline a new HDF5 container was defined and the fusion/deconvolution output was
saved into it.

Table 2. Comparison of total calculation time per single node — original and Salomon cluster

Original Cluster 90 TPsHSalomon cluster 90 TPs

Resave to hdf5 15 12
Detection and registration 15 7
Average fusion 47 6
Deconvolution GPU Il CPU 740 57
Resave output 7 3
Total with average fusion 1h 31min Oh 35min
Total with deconvolution 13 h 9 min 2h 22min

The same dataset was used previously by Schmied et al. [10] to test an equivalent
pipeline on a cluster at MPI-CBG in Dresden (for specifications see chapter 2.4). In
order to compare the performance of the pipeline in the new HPC environment of the
Salomon cluster in Ostrava we benchmarked the speed of the execution and memory
consumption of individual steps of the pipeline, i.e. resaving, registration, fusion and
deconvolution (Table 1) as well as the total duration of the processing of all 90 time-
points (Table 2).

In addition, we examined the processed SPIM images in the HDF5 containers with
the BigDataViewer (Figure ??). The results show that entire pipeline was executed suc-
cessfully and significantly faster on Salomon compared to Madmax cluster reflecting
the difference in hardware performance.

Since the Snakemake pipeline on the Salomon cluster was launched through the
Fiji plugin we conclude that the HaaS mediated remote execution is a viable option for
processing of big SPIM datasets on a publicly accessible HPC resource.

4 Discussion

Herein described Fiji plugin facilitates the deployment of time-consuming task to HPC
resources by not only providing a graphical user interface for configuring and running
jobs on remote HPC machine, but also by significantly simplifying the official regis-
tration process required for running tasks on HPC infrastructure. The plugin design
is general and supports execution of any task that can be specified as a batch job not
limiting itself to a Fiji environment.

A workflow for parallel processing of large multiview SPIM dataset was used as an
testing example of compute-intensive task to present the features of the newly devel-
oped plugin with HPC as a Service middleware. The experiments on the SPIM pipeline
showed that the newer CPU architecture and larger number of cluster nodes led to sig-
nificantly shorter running times when compared to the original study. Newly developed
plugin simplifies the deployment of the computational intensive tasks on the HPC in-
frastructure and thanks to the graphic interface may attract those users who were dis-
couraged from using the HPC infrastructure by the necessity of manual deployment of
tasks via the command line and remote shell.

Future improvements of the newly developed plugin should aim at running more
general tasks, not only a batch pipeline. Eventually, we aim to develop a parallel pro-
cessing plugin focused not only on a task parallelism but on more complex code-level
parallelism.

5 Acknowledgement

This work was supported by the European Regional Development Fund in the IT4Innovations
national supercomputing center — path to exascale project, project number CZ.02.1.01/0.0/0.0/16_013/0001791
within the Operational Programme Research, Development and Education.

References

1. Amat, F., Hockendorf, B., Wan, Y., Lemon, W.C., McDole, K., Keller, P.J.: Efficient process-
ing and analysis of large-scale light-sheet microscopy data. Nature protocols 10(11), 1679
(2015)

2. Huisken, J., Stainier, D.Y.: Selective plane illumination microscopy techniques in devel-
opmental biology. Development 136(12), 1963-1975 (Jun 2009), http://www.ncbi.
nlm.nih.gov/pubmed/19465594

3. Kozusznik, J.: Multiview reconstruction with hpcaaa. https://github.com/
kozusznik/multiview-reconstruction-hpcaas (2018), https:
//doi.org/10.5281/zenodo.1185278

4. Pietzsch, T., Saalfeld, S., Preibisch, S., Tomancak, P.: Bigdataviewer: visualization and pro-
cessing for large image data sets. Nature methods 12(6), 481 (2015)

5. Preibisch, S., Amat, F., Stamataki, E., Sarov, M., Singer, R.H., Myers, E., Tomancak, P.:
Efficient bayesian-based multiview deconvolution. nature methods 11(6), 645 (2014)

6. Preibisch, S., Saalfeld, S., Schindelin, J., Tomancak, P.: Software for bead-based registration
of selective plane illumination microscopy data. Nature methods 7(6), 418 (2010)

7. Rueden, C.T., Eliceiri, K.W.: The imagej ecosystem: An open and extensible platform for
biomedical image analysis. Microscopy and Microanalysis 23(S1), 226-227 (2017)

8. Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., Eliceiri,
K.W.: Imagej2: Imagej for the next generation of scientific image data. BMC Bioinformatics
18(1), 529 (Nov 2017), https://doi.org/10.1186/s12859-017-1934-z

9. Schindelin, J., Arganda-Carreras, 1., Frise, E., Kaynig, V., Longair, M., Pietzsch, T,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.: Fiji: an open-source platform for
biological-image analysis. Nature methods 9(7), 676 (2012)

10. Schmied, C., Steinbach, P., Pietzsch, T., Preibisch, S., Tomancak, P.: An automated workflow
for parallel processing of large multiview spim recordings. Bioinformatics 32(7), 1112-1114
(2016), +http://dx.doi.org/10.1093/bioinformatics/btv706

11. Svaton, V., Podhoranyi, M., Vaviik, R., Veteska, P., Szturcovd, D., Vojtek, D., Martinovic,
J., Vondrék, V.: Floreon+: A web-based platform for flood prediction, hydrologic modelling
and dynamic data analysis. In: Ivan, 1., Hordk, J., Inspektor, T. (eds.) Dynamics in Glscience.
pp. 409—422. Springer International Publishing, Cham (2018)

http://www.ncbi.nlm.nih.gov/pubmed/19465594
http://www.ncbi.nlm.nih.gov/pubmed/19465594
https://github.com/kozusznik/multiview-reconstruction-hpcaas
https://github.com/kozusznik/multiview-reconstruction-hpcaas
https://doi.org/10.5281/zenodo.1185278
https://doi.org/10.5281/zenodo.1185278
https://doi.org/10.1186/s12859-017-1934-z
+ http://dx.doi.org/10.1093/bioinformatics/btv706

	Using HPC as a Service for Remote Parallel Processing on the Fiji Platform

